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Two Major Changes in Labor Markets

I U.S. labor markets of last several decades characterized by job polarization and declining labor

share of income
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I Job polarization also in Europe (Goos, Manning and Salomons (2009,2014); Michaels, Natraj and
Van Reenen (2014)); labor share decline worldwide (Karabarbounis and Neiman (2013))
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I Not just U.S. – job polarization also in Europe (Goos, Manning and Salomons (2009,2014); Michaels,
Natraj and Van Reenen (2014)) , labor share decline worldwide (Karabarbounis and Neiman (2013))



What We Know and What We Don’t

I What We Know: Lots of empirical evidence supporting that technology of some form is a

key driver of these changes
(e.g. Autor and Dorn (2013); Karabarbounis and Neiman (2013); Michaels et al. (2014);
Goos, Manning and Salomons (2014); Eden and Gaggl (2018b); vom Lehn (2018b))

I What We Don’t Know (as much): Exact quantitative mechanisms driving these changes
– the “how” of technology and labor markets

I Remainder of This Talk:

I Start from natural macroeconomic benchmarks – falling price of
machines/technology and neoclassical theories of production

I Highlight findings using neoclassical theory for polarization and labor share
I Discuss recent and ongoing work to further address channels through which

technology impacts polarization and the labor share
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Machines are Getting Cheaper
I Benchmark way to think of technological change is that innovation makes machines cheaper and

cheaper over time
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I Reduction in price of machines impacts labor demand – firms to substitute from certain workers to
machines, reducing labor income and changing job composition



Neoclassical Production Framework

I Aggregate production function (in spirit of Autor and Dorn (2013)):

Y =K 1−α

µnr L
γnr−1

γnr
nr +(1−µnr )

{
µr L

γr−1
γr

r +(1−µr )M
γr−1

γr

} γr
γr−1

γnr−1
γnr

(1−α)
γnr

γnr−1

Lnr : Non-routine workers
Lr : Routine workers
M : Machines
K : Other capital
Key parameters: elasticities of substitution (γnr , γr ), production weights (µnr ,µr )



Implications for Polarization and Labor Share

I How will declining price of machines (PM ) impact share of employment in routine jobs (sr ) and labor
share of income (Lsh)?

I Assuming profit maximization and competitive markets, comparative statics imply:

∂sr
∂PM
PM

= sr ξM (1− sr )(γr − γnr )

∂Lsh
∂PM
PM

= Lsh (1−Lsh)
[(

1−ξM sinc
nr

)
γr + ξM sinc

nr γnr −1
]

I Three critical quantitative objects:

I γr , γnr : elasticities of substitution
I ξM = PM M

PM M+wr Lr
: share of income machines receive relative to routine workers (function of

prices and parameters)
I ∂Pm

Pm
: amount of change in price of machines
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Findings: Eden and Gaggl (2018b, RED)

I Eden and Gaggl (2018) – use version of this framework to show technological change can account

for 50% of labor share declineA. Labor Share
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I Caveat: requires a re-nesting of routine and non-routine labor – capital-skill complementarity (Krusell
et al. (2000)); model can’t fit the data with Autor and Dorn (2013) nesting.



Findings: Cortes, Jaimovich and Siu (2017, JME)

I Cortes, Jaimovich and Siu (2017) study polarization in generalized neoclassical
production technology

I Contrast: use movements in quantities of machines ( ∆M
M ) instead of prices ( ∆PM

PM
)

I Quantitative exercises:

I estimate ∆M
M ≈ 1

I ξM = 0.0845
I γr = 1

I =⇒ account for roughly 10% of observed changes in employment between
routine and non-routine jobs

I To exactly match observed polarization, need ∆M
M > 20,000% of observed

change.
I Results may be sensitive to using prices vs. quantities and capital aggregation

(see Eden and Gaggl (2018a, WP))
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Findings: vom Lehn (2018a, WP)

I vom Lehn (2018a) extends production to treat high-skill (abstract) and low-skill
(manual) non-routine occupations separately:

Y =

µmL
γm−1

γm
m + (1−µm)

µaL
γa−1

γa
at + (1−µa)

[
(1−µr )M

γr−1
γr

t + µr L
γr−1

γr
rt

] γr (γa−1)
(γr−1)γa


γa(γm−1)
(γa−1)γm


γm

γm−1

I Measure ξM using all equipment capital instead of just ICT; use investment price
data to generate price of machines

I To maximize fit of technology hypothesis, calibrate model to match polarization
over subsample of the data (1980s)

I General Equilibrium – consider both representative household and
heterogeneous workers



Findings: vom Lehn (2018a, WP)

I Even with favorable calibration, can’t match observed polarization and labor
share behavior post-2000
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I Robust to labor supply, endogenous occupational and educational choices,
calibration window, nesting structures, ICT instead of all equipment

I Can fit data if fall in price of machines counterfactually actually ends in 2000
I Key point: single set of elasticities of substitution can’t reconcile changing

dynamics of polarization over time



Possible Resolutions

I Other shocks (e.g. trade)

I Changing relationship between technology and high-skill labor

I due to role of skills in technology production/adoption
I due to evolution of technological capabilities



Slowdown in Demand for Skills: Beaudry, Green and Sand
(2016, JOLE)

I Beaudry, Green and Sand (2016) find slowing employment growth in high skill jobs post-2000

I Hypothesize: Slowing investment post-2000 (due to slowing fall in price of machines) means fewer
high skill workers are needed to produce/install/adopt new technology



Quantitative Application (vom Lehn (2018a, WP))

I Extending neoclassical framework to have high skill workers produce investment improves fit of

technology hypothesis
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I Caveat: strong assumption about all investment produced by high skill workers



Evolution of Technology and Skills: vom Lehn (2018b, EER)

I vom Lehn (2018b) studies cross-industry relationship between worker tasks and
labor share declines

I Construct measure of high-skill occupations most susceptible to automation –
“abstract replaceable”

I OLS and IV evidence finds that industries with large fraction of abstract
replaceable jobs in 2004 saw accelerated labor share declines post-2004

I Suggestive evidence that technology may be evolving to replace some high-skill
occupations



Conclusion

I Both anecdotal and empirical evidence suggest that technology has substantially
impacted labor markets

I Understanding quantitative mechanisms for how technology impacts labor
markets still a work in progress

I Key aspect of future research is understanding the exact interaction of
technology with higher skilled workers
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